

SSC8034GSB

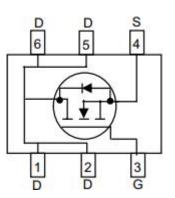
N-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSON Typ.	ID
	0V ±12V	18mR@10V	
30V		20mR@4V5	7A
		30mR@2V5	

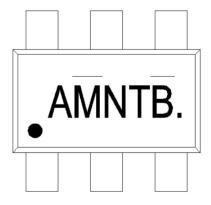
> Description

The SSC8034GSB is N-Channel enhancement MOS Field Effect Transistor. Uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device is suitable for use in DC-DC conversion and power switch applications.


- Applications
- Load Switch
- Portable Switch
- DCDC conversion
- Charging
- Driver for Relay, Motor, Solenoid, LED etc.

> Ordering Information

Device	Package	Shipping
SSC8034GSB	SOT23-6	3000/Reel


Pin configuration

Bottom View

Marking

> Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

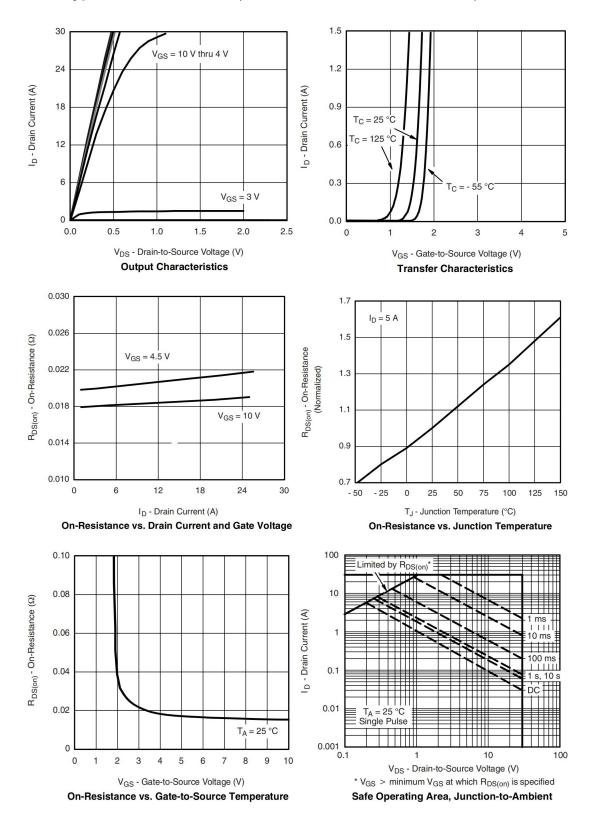
Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-to-Source Voltage	30	V
V _{GSS}	Gate-to-Source Voltage	±12	V
ID	Continuous Drain Current ^a	7	А
I _{DM}	Pulsed Drain Current ^b	28	А
PD	Power Dissipation °	1.7	W
Розм	Power Dissipation ^a	0.9	W
TJ	Operation junction temperature	-55 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

> Thermal Resistance Ratings($T_A=25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
$R_{ extsf{ heta}JA}$	Junction-to-Ambient Thermal Resistance ^a		155	°C/W
R _{θJC}	Junction-to-Case Thermal Resistance		80	C/ VV

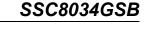
Note:

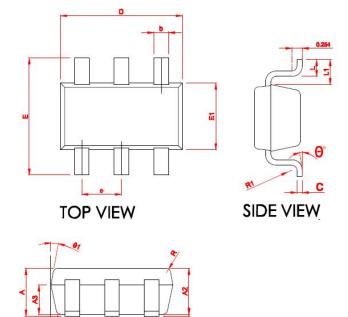
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A=25°C.The value in any given application depends on the user is specific board design. The current rating is based on the t≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	30			V
$V_{GS \ (th)}$	Gate Threshold Voltage	VDS=VGS,ID=250uA	0.7	1	1.4	V
		VGS=10V,ID=5A		18	30	
$R_{DS(on)}$	Drain-Source On-	VGS=4.5V,ID=4A		20	35	mR
	Resistance	VGS=2.5V,ID=3A		30	55	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=24V,VGS=0V			1	uA
I _{GSS}	Gate-Source leak current	VGS=±12V,VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=5V,ID=3A		10		S
V_{SD}	Forward Voltage	VGS=0V,IS=1A		0.7	1.4	V
Ciss	Input Capacitance			700		
Coss	Output Capacitance	VDS=15V, VGS=0V, f=1MHz		300		pF
Crss	Reverse Transfer Capacitance			260		
T _{D(ON)}	Turn-on delay time			19		
Tr	Rise Time	VGS=10V,		9		
$T_{D(OFF)}$	Turn-off delay time	VDS=15V,ID=3A		65		ns
Tf	Fall Time			20		
Qg	Total Gate charge			10.6		
Qgs	Gate Source charge	VGS=10V, VDS=10V, ID=3A		1.9		nC
Qgd	Gate Drain charge	Gate Drain charge		2.1		


> **Typical Characteristics**($T_A=25^{\circ}C$ unless otherwise noted)



> Package Information

SIDE VIEW

-	N	ILLIMETE	R
SYMBOL	MIN	NOM	MAX
Α	1.06	1.15	1.24
* A1	0.01	0.05	0.09
* A2	1.05	1.10	1.15
A3	0.65	0.70	0.75
* b	0.30	0.35	0.45
* c	0.117	0.127	0.157
* D	2.87	2.92	2.97
* E	2.72	2.80	2.88
* E1	1.55	1.60	1.65
* e	0.90	0.95	1.00
* L	0.32	0.40	0.48
* L1	0.55	0.60	0.65
R	0.10 REF		
R1	0.12 REF		
*θ	0		8°
0 1	8°	10°	12°
02	10°	12°	14°

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.